Uniform attractors for non-autonomous Klein-Gordon-Schrǒdinger lattice systems

排行榜 收藏 打印 发给朋友 举报 来源: 《Applied Mathematics and Mechanics》 发布者:cjk3d
热度1票 浏览15次 【共0条评论】【我要评论 时间:2009年12月16日 14:08
Uniform attractors for non-autonomous Klein-Gordon-Schrǒdinger lattice systems

The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrodinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.水利论文(__ j*t$}1Qb s-j

作 者: Jin-wu HUANG Xiao-ying HAN Sheng-fan ZHOU  
作者单位:Jin-wu HUANG,Sheng-fan ZHOU(Department of Applied Mathematics, Shanghai Normal University,Shanghai 200234, P. R. China)
Y'n+zBA X/X n0Xiao-ying HAN(Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, United States of America) 
刊 名:应用数学和力学(英文版)  EI SCI
英文刊名:APPLIED MATHEMATICS AND MECHANICS 
年,卷(期):2009 30(12) 
分类号:O175.15 
关键词:compact uniform attractor   non-autonomous   Klein-Gordon-Schrodinger lattice system   Kolmogorov entropy   upper semicontinuity  
机标关键词:uniform attractorupper semicontinuityKolmogorov entropydynamical systemupper boundprocessesexistencefamily 
基金项目:国家自然科学基金,the Ph. D. Program of Ministry of Education of China,the Shanghai Leading Academic Discipline Project,the Innovation Program of Shanghai Municipal Education Commission,the Foundation of Shanghai Talented Persons,the Leading Academic Discipline Project of Shanghai Normal University,the Foundation of Shanghai Normal University 
上一篇没有文章了
上一篇:Some results of variational inclusion problems and fixed point problems with app
查看全部回复【已有0位网友发表了看法】

广告投放

广告投放